Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Autonomous anomaly detection system for crime monitoring and alert generation

Tytuł:
Autonomous anomaly detection system for crime monitoring and alert generation
Autorzy:
Kukad, Jyoti
Soner, Swapnil
Pandya, Sagar
Data publikacji:
2022
Słowa kluczowe:
autonomous vehicle
LSTM
Open CV
ECC
crime
streaming
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Nowadays, violence has a major impact in society. Violence metrics increasing very rapidly reveal a very alarming situation. Many violent events go unnoticed. Over the last few years, autonomous vehicles have been used to observe and recognize abnormalities in human behavior and to classify them as crimes or not. Detecting crime on live streams requires classifying an event as a crime or not a crime and generating alerts to designated authorities, who can in turn take the required actions and assess the security of the city. There is currently a need for this kind of effective techniques for live video stream processing in computer vision. There are many techniques that can be used, but Long Short-Term Memory (LSTM) networks and OpenCV provide the most accurate prediction for this task. OpenCV is used for the task of object detection in computer vision, which will take the input from either a drone or any autonomous vehicle. LSTM is used to classify any event or behavior as a crime or not. This live stream is also encrypted using the Elliptic curve algorithm for more security of data against any manipulation. Through its ability to sense its surroundings, an autonomous vehicle is able to operate itself and execute critical activities without the need for human interaction. Much crowd-based crimes like mob lynching and individual crimes like murder, burglary, and terrorism can be protected against with advanced deep learning-based Anamoly detection techniques. With this proposed system, object detection is possible with approximately 90% accuracy. After analyzing all the data, it is sent to the nearest concern department to provide the remedial approach or protect from any crime. This system helps to enhance surveillance and decrease the crime rate in society.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies