Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Research on garden landscape reconstruction based on geographic information system under the background of deep learning

Tytuł:
Research on garden landscape reconstruction based on geographic information system under the background of deep learning
Autorzy:
Cui, Ying
Data publikacji:
2023
Słowa kluczowe:
GAN
arbitration mechanism
circle loss function
geographic information system
garden landscape reconstruction
measurement score
reconstruction task
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In the context of deep learning, this paper combines the arbitration mechanism to propose a GAN (Arbi-DCGAN) model based on the arbitration mechanism. First, the network structure of the proposed improved algorithm is composed of generator, discriminator and arbitrator. Then, the generator and the discriminator will conduct adversarial training according to the training plan and strengthen the ability of generating images and distinguishing the authenticity of the images according to the characteristics learned from the data set. Secondly, the arbitrator is composed of the generator, discriminator and measurement score computation module that have undergone the previous adversarial training. The arbitrator will feed back the results of the metric generator and discriminator adversarial training to the training plan. Finally, a winning limit is added to the network structure to improve the stability of model training, and the Circle loss function is used to replace the BCE loss function, which makes the model optimization process more flexible and the convergence state more clear. On the basis of geographic information system, this paper uses 325 meticulously annotated sample plans to establish a data set for deep learning, and trains the Arbi-DCGAN model to achieve the task of extracting land plots of different land types in the plan, as well as from the plane color block map to the color texture. The rendering and generation of the map complete the reconstruction task of the garden landscape. In addition, we further evaluate the results of the model's reconstruction of the garden landscape from the aspects of image quality, correct standardization and color expression. The training model has the potential to be applied to land type analysis and plane rendering in landscape architecture cases, helping designers improve the efficiency of analysis and drawing.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies