Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion

Tytuł:
A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion
Autorzy:
Jum, E.
Kobayashi, K.
Data publikacji:
2016
Słowa kluczowe:
stochastic differential equation
numerical approximation
order of convergence
time-changed Brownian motion
inverse subordinator
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper establishes a discretization scheme for a large class of stochastic differential equations driven by a time-changed Brownian motion with drift, where the time change is given by a general inverse subordinator. The scheme involves two types of errors: one generated by application of the Euler-Maruyama scheme and the other ascribed to simulation of the inverse subordinator. With the two errors carefully examined, the orders of strong and weak convergence are established. In particular, an improved error estimate for the Euler-Maruyama scheme is derived, which is required to guarantee the strong convergence. Numerical examples are attached to support the convergence results.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies