Tytuł pozycji:
Asymptotic results for random polynomials on the unit circle
In this paper we study the asymptotic behavior of the maximum magnitude of a complex random polynomial with i.i.d. uniformly distributed random roots on the unit circle. More specifically, let {nk}∞k=1 be an infinite sequence of positive integers and let {zk}∞k=1 be a sequence of i.i.d. uniformly distributed random variables on the unit circle. The above pair of sequences determine a sequence of random polynomials PN(z) = ΠNk=1 (z − zk)nk with random roots on the unit circle and their corresponding multiplicities. In this work, we show that subject to a certain regularity condition on the sequence {nk}∞k=1, the log maximum magnitude of these polynomials scales as sNI*, where s2N = ΣNk=1 n2k and I* is a strictly positive random variable.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).