Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Inspirowane kwantowo sieci neuronowe typu Hopfielda

W pracy przedstawiono koncepcję sieci neuronowej o zespolonych parametrach (Q-inspired). Realizacja takiej sieci wykorzystuje hermitowską macierz połączeń pomiędzy neuronami. Zaproponowano również model uczenia maszynowego zrealizowany na bazie zespolonego aproksymatora. Wykazano przydatność takiego aproksymatora w analizie sygnałów w szczególności do realizacji dyskretnej transfomacji Fouriera (DFT) oraz odwrotnej dyskretnej transformacji Fouriera (IDFT).
The paper presents the concept of a neural network with complex-valued parameters (Q-inspired). Implementation of such a network uses the Hermitian matrix of connections between neurons. A machine learning model based on a complex approximator has also been proposed. The usefulness of such an approximator in signal analysis has been demonstrated especially for the implementation of discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT).
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies