Tytuł pozycji:
Porównanie różnych metod detekcji i rozpoznawania zwierząt na obrazach z kamery termowizyjnej
Dla większości dziko żyjących zwierząt szczyt aktywności przypada na godziny nocne – ich obserwacja możliwa jest tylko przy użyciu specjalistycznych urządzeń. W niniejszej pracy zostało przeprowadzone porównanie różnych metod detekcji zwierząt na zdjęciach z kamery termowizyjnej: klasycznych (HOG/SVM) oraz opartych na głębokich sieciach neuronowych. Podczas testów na zbiorze danych zawierającym dwie rodziny zwierząt (Cervidae i Suidae) dla sieci YOLOv3 otrzymano wyniki mAP powyżej 90% dla IoU>50%.
For most wild animals, peak of activity takes place during the night hours - their observation is possible only with the use of specialized equipment. In this study, a comparison of different methods for animal detection in thermal camera images was performed: classical (HOG/SVM) and based on deep neural networks. When tested on a dataset containing two animal families (Cervidae and Suidae) for the YOLOv3 network, obtained mAP was above 90% for IoU>50%.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).