Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evaluation of the effects of land-use change and increasing deforestation in the Sapanca Basin on total suspended solids (TSS) movement with predictive models

Tytuł:
Evaluation of the effects of land-use change and increasing deforestation in the Sapanca Basin on total suspended solids (TSS) movement with predictive models
Autorzy:
Temiz, Temel
Sonmez, Osman
Dogan, Emrah
Oner, Adnan
Opan, Mücahit
Data publikacji:
2022
Słowa kluczowe:
suspended sediment
land-use
sediment rating curve
multi linear regression
artificial neural network
osady zawieszone
zagospodarowanie terenu
krzywa oceny osadów
regresja wieloliniowa
sztuczna sieć neuronowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Sapanca Lake is a tectonically sourced freshwater resource and one of the rare natural water resources used as a source of drinking water. This study examined the change of land use and lake area in the natural water source basin subjected to human pressure for years. Landsat 5 TM (1987) and Landsat 8 TM (2010) satellite images were used. Satellite images were analyzed using ArcGIS 10.1 software. As a result of the analysis, it was observed that the natural vegetation was significantly destroyed between 1987 and 2010. Besides, the bathymetry maps of Lake Sapanca belonging to the years 1990 and 2010 were also examined, and accordingly, it was determined that there was a 2% reduction in the lake surface area. The decrease in the volume of the lake was thought to be due to sedimentation movement caused by land-use change, and the total amount of suspended solids, grain size, discharge, and temperature measurements were made between 2012 and 2014 in 12 streams which are sources of Sapanca Lake. Sediment prediction models have been developed under two different scenarios using measurement data from side streams. Artificial neural networks (ANN), Sediment rating curve, and multiple linear regression models were examined within the scenario models, and comparisons were made between the models. It was determined that ANN achieved the closest results with the measurement data.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies