Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Implementation and Performance Evaluation of a Model Predictive Controller for a Semi-Autogenous Grinding Mill

Tytuł:
Implementation and Performance Evaluation of a Model Predictive Controller for a Semi-Autogenous Grinding Mill
Autorzy:
Shende, Dipali Rohit
Simon, Abner
Data publikacji:
2024
Słowa kluczowe:
model predictive control
semi-autogenous grinding mill
uranium ore processing
neural network modeling and operational efficiency optimization
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This paper investigates the implementation of a model-based predictive control (MPC) strategy to improve the performance of a semi-autogenous grinding (SAG) mill in a uranium mineral processing plant. The SAG mill, crucial in crushing and grinding uranium ore to the desired size, is currently managed using conventional proportional-integral-derivative (PID) controllers. However, to enhance production efficiency and control over the SAG mill's variables, this paper suggests the adoption of MPC. The proposed MPC controller is developed using a neural network (NN) model of the SAG mill, created in MATLAB with data collected over 21 days. The effectiveness of the MPC controller is assessed by contrasting its response with that of the real-time operator control. This comparison utilizes tools like MATLAB and the RSlinx remote server for accessing OPC real-time data. Findings reveal that the MPC controller exhibits a quicker reaction to alterations in the SAG mill's process outputs and proficiently regulates crucial outputs such as Mill mass, ensuring that the manipulated variables stay within their designated limits. Unlike operator control, which is slower and adjusts one variable at a time, the MPC approach can maximize the mill's throughput rate without impacting the ore feed rate. This demonstrates the MPC controller's superior ability to optimize SAG mill operations efficiently.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies