Tytuł pozycji:
Thermal properties of Al alloy matrix composites reinforced with MAX type phases
A method was developed for manufacturing Al-Si alloy matrix composites reinforced with MAX phases by squeeze casting pressure infiltration of porous preforms. MAX phases in the Ti-Al-C system were synthesized using self-propagating hightemperature synthesis (SHS) in the microwave assisted mode in order to obtain spatial structures with open porosity consisting of a mixture of Ti2AlC and Ti3AlC2. The manufactured composite together with a reference sample of sole matrix material were subjected to the testing of thermal properties such as: thermal conductivity, thermal diffusivity and thermal expansion in the temperature range of 50÷500°C, which corresponds to the expected working temperatures of the material. The specific heat and mass change during heating were also established by means of thermogravimetric analysis. The obtained thermal conductivity coefficients for the Al-Si+Ti-Al-C composite were higher than for the sole MAX phases and equaled 27÷29 W/m·K. The thermal expansion values for the composite material were reduced two-fold in comparison with the matrix.
Opracowano metodę wytwarzania kompozytów na osnowie stopu Al-Si wzmocnionego fazami typu MAX metodą infiltracji ciśnieniowej porowatych preform. Fazy typu MAX syntezowano metodą samorozprzestrzeniającej się syntezy wysokotemperaturowej (SHS), wspomaganej mikrofalami w układzie Ti-Al-C, w celu uzyskania przestrzennych struktur o porowatości otwartej z mieszaniny faz Ti2AlC i Ti3AlC2. Wytworzone materiały kompozytowe wraz z próbką referencyjną w postaci materiału osnowy poddano badaniom właściwości cieplnych, tj. przewodności cieplnej, dyfuzyjności cieplnej oraz rozszerzalności cieplnej w zakresie temperatur 50÷500°C, który przyjęto jako spodziewany zakres temperatur pracy wytworzonych materiałów. Wyznaczono również wartości ciepła właściwego oraz, za pomocą analizy termograwimetrycznej, zmiany masy w stosunku do zmiany temperatury. Uzyskane współczynniki przewodności cieplnej dla materiału kompozytowego Al-Si+Ti-Al-C były wyższe niż dla samych faz typu MAX i wynosiły 27÷29 W/m·K. Zmierzone wartości współczynnika rozszerzalności cieplnej dla materiału kompozytowego były dwukrotnie niższe w odniesieniu do materiału osnowy.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).