Tytuł pozycji:
FPGA-based Low Latency Square Root CORDIC Algorithm
The coordinate rotation digital computer (CORDIC) algorithm is a popular method used in many fields of science and technology. Unfortunately, it is a time-consuming process for central processing units (CPUs) and graphics processing units (GPUs), and even for specialized digital signal processing (DSP) solutions. The CORDIC algorithm is an alternative for Newton-Raphson numerical calculation and for the FPGA based resource-expensive look-up-table (LUT) method. Various modifications of the CORDIC algorithm allow to speed up the operation of hardware in edge computing devices.With that context taken into consideration, this article presents a fast and accurate square root floating point (SQRT FP) CORDIC function which can be implemented in field programmable gate arrays (FPGAs). The proposed algorithm offers low-complexity, decent accuracy and speed, and is sufficient for digital signal processing (DSP) applications, such as digital filters, accelerators for neural networks, machine learning and computer vision applications, and intelligent robotic systems.