Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Stator-rotor fault diagnosis of induction motor based on time-frequency domain feature extraction

Tytuł:
Stator-rotor fault diagnosis of induction motor based on time-frequency domain feature extraction
Autorzy:
Yi, Lingzhi
Long, Jiao
Wang, Yahui
Sun, Tao
Huang, Jianxiong
Huang, Yi
Data publikacji:
2023
Słowa kluczowe:
induction motor
time-frequency domain feature extraction
Golden Jackal Optimization
fault diagnosis
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Since the induction motor operates in a complex environment, making the stator and rotor of the motor susceptible to damage, which would have significant impact on the whole system, efficient diagnostic methods are necessary to minimize the risk of failure. However, traditional fault diagnosis methods have limited applicability and accuracy in diagnosing various types of stator and rotor faults. To address this issue, this paper proposes a stator-rotor fault diagnosis model based on time-frequency domain feature extraction and Extreme Learning Machine (ELM) optimized with Golden Jackal Optimization (GJO) to achieve high-precision diagnosis of motor faults. The proposed method first establishes a platform for acquiring induction motor stator-rotor fault data. Next, wavelet threshold denoising is used to pre-process the fault current signal data, followed by feature extraction to perform time-frequency domain eigenvalue analysis. By comparison, the impulse factor is finally adopted as the feature vector of the diagnostic model. Finally, an induction motor fault diagnosis model is constructed by using the GJO to optimize the ELM. The resulting simulations are carried out by comparing with neural networks, and the results show that the proposed GJO-ELM model has the highest diagnostic accuracy of 94.5%. This finding indicates that the proposed method outperforms traditional methods in feature learning and classification of induction motor fault diagnosis, and has certain engineering application value.
This work was supported by the National Natural Science Foundation of China (61572416), Hunan Province Natural Science Zhuzhou United Foundation (2022JJ50132), and the Postgraduate Scientific Research Innovation Project of the Hunan Province (QL20210153).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies