Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Classification and inspection of milling surface roughness based on a broad learning system

Tytuł:
Classification and inspection of milling surface roughness based on a broad learning system
Autorzy:
Fang, Runji
Yi, Huaian
Wang, Shuai
Niu, Yilun
Data publikacji:
2022
Słowa kluczowe:
broad learning system
classification
milling surface roughness
rapid training
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Current vision-based roughness measurement methods are classified into two main types: index design and deep learning. Among them, the computation procedure for constructing a roughness correlation index based on image data is relatively difficult, and the imaging environment criteria are stringent and not universally applicable. The roughness measurement method based on deep learning takes a long time to train the model, which is not conducive to achieving rapid online roughness measurement. To tackle with the problems mentioned above, a visual measurement method for surface roughness of milling workpieces based on broad learning system was proposed in this paper. The process began by capturing photos of the milling workpiece using a CCD camera in a normal lighting setting. Then, the train set was augmented with additional data to lower the quantity of data required by the model. Finally, the broad learning system was utilized to achieve the classification prediction of roughness. The experimental results showed that the roughness measurement method in this paper not only had a training speed incomparable to deep learning models, but also could automatically extract features and exhibited high recognition accuracy.
1. This work was supported in part by the National Natural Science Foundation of China (Grant No. 52065016), the Guangxi Graduate Student Innovation Project in 2021 (Grant No. YCSW2021204), and Doctoral Start-Up Foundation of Guilin University of Technology (Grant No. GLUTQD2017060).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies