Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Calibration of backward-in-time model using drifting buoys in the East China Sea

Tytuł:
Calibration of backward-in-time model using drifting buoys in the East China Sea
Autorzy:
Yu, F.
Li, J.
Zhao, Y.
Li, Q.
Chen, G.
Data publikacji:
2017
Słowa kluczowe:
wind drag coefficient
random walk
drifter buoys
oil spill reverse
oil spill model
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In the process of oil exploitation and transportation, large amounts of crude oil are often spilled, resulting in serious pollution of the marine environment. Forecasting oil spill reverse trajectories to determine the exact oil spill sources is crucial for taking proactive and effective emergency measures. In this study, the backward-in-time model (BTM) is proposed for identifying sources of oil spills in the East China Sea. The wind, current and random walk are three major factors in the simulation of oil spill sources. The wind drag coefficient varies along with the uncertainty of the wind field, and the random walk is sensitive to various traits of different regions, these factors are taken as constants in most of the state-of-the-art studies. In this paper, a self-adaptive modification mechanism for drift factors is proposed, which depends on a data set derived from the drifter buoys deployed over the East China Sea shelf. It can be well adapted to the regional characteristics of different sea areas. The correlation factor between predicted positions and actual locations of the drifters is used to estimate optimal coefficients of the BTM. A comparison between the BTM and the traditional method is also made in this study. The results presented in this paper indicate that our method can be used to predict the actual specific spillage locations.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies