Tytuł pozycji:
A comparison of advanced computational models and experimental techniques in predicting blast induced ground vibration in open pit coal mine
Green mining is an essential requirement for the development of the mining industry. Of the operations in mining technology, blasting is one of the operations that signifcantly affect the environment, especially ground vibration. In this paper, four artificial intelligence (AI) models including artificial neural network (ANN), k-nearest neighbor (KNN), support vector machine (SVM), and classification and regression tree (CART) were developed as the advanced computational models for estimating blast-induced ground vibration in a case study of Vietnam. Some empirical techniques were applied and developed to predict ground vibration and compared with the four AI models as well. For this research, 68 events of blasting were collected; 80% of the whole datasets were used to build the mentioned models, and the rest 20% were used for testing/checking the models’ performances. Mean absolute error (MAE), determination coefficient (R2 ), and root-mean-square error (RMSE) were used as the standards to evaluate the quality of the models in this study. The results indicated that the advanced computational models were much better than empirical techniques in estimating blast-induced ground vibration in the present study. The ANN model (2-6-8-6-1) was introduced as the most superior model for predicting ground vibration with an RMSE of 0.508, R2 of 0.981 and MAE of 0.405 on the testing dataset. The SVM, CART, and KNN models provided poorer performance with an RMSE of 1.192, 2.820, 1.878; R2 of 0.886, 0.618, 0.737; and MAE of 0.659, 1.631, 0.762, respectively.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).