Tytuł pozycji:
Context-based segmentation of the longissimus muscle in beef with a deep neural network
- Tytuł:
-
Context-based segmentation of the longissimus muscle in beef with a deep neural network
- Autorzy:
-
Talacha, Karol
Świderski, Bartosz
Kurek, Jarosław
Kruk, Michał
Półtorak, Andrzej
Chmielewski, Leszek J.
Wieczorek, Grzegorz
Antoniuk, Izabella
Pach, Jakub
Orłowski, Arkadiusz
- Data publikacji:
-
2019
- Słowa kluczowe:
-
beef carcasses
context-based
segmentation
longissimus muscle
classification
deep convolutional network
beef quality
- Język:
-
angielski
- Dostawca treści:
-
BazTech
-
Przejdź do źródła  Link otwiera się w nowym oknie Pełny tekst  Link otwiera się w nowym oknie
The problem of segmenting the cross-section through the longissimus muscle in beef carcasses with computer vision methods was investigated. The available data were 111 images of cross-sections coming from 28 cows (typically four images per cow). Training data were the pixels of the muscles, marked manually. The AlexNet deep convolutional neural network was used as the classifier, and single pixels were the classified objects. Each pixel was presented to the network together with its small circular neighbourhood, and with its context represented by the further neighbourhood, darkened by halving the image intensity. The average classification accuracy was 96%. The accuracy without darkening the context was found to be smaller, with a small but statistically significant difference. The segmentation of the longissimus muscle is the introductory stage for the next steps of assessing the quality of beef for the alimentary purposes.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).