Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Grey wolf optimization-based variational mode decomposition for magnetotelluric data combined with detrended fluctuation analysis

Tytuł:
Grey wolf optimization-based variational mode decomposition for magnetotelluric data combined with detrended fluctuation analysis
Autorzy:
Zhang, Xian
Li, Diquan
Li, Jin
Li, Yong
Data publikacji:
2022
Słowa kluczowe:
magnetotelluryka
odszumianie
dekompozycja w trybie wariacyjnym
magnetotellurics
denoising
variational mode decomposition
Grey Wolf Optimization
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We present a magnetotelluric data denoising method that uses grey wolf optimization to optimize variational mode decomposition and combines it with detrended fluctuation analysis. First, envelope entropy is selected as the fitness function for grey wolf optimization and is used to determine the number of modes K and the penalty factor, which are the key parameters of the variational mode decomposition method. Then, the optimized variational mode decomposition method is used to decompose magnetotelluric data. Finally, the scaling exponent in detrended fluctuation analysis is used to determine the corresponding intrinsic mode function components to superimpose and reconstruct the useful magnetotelluric data. Extensive experiments and thorough analyses are performed on the synthetic data and field data. The results of the proposed method are compared with the results of the remote reference, variational mode decomposition, variational mode decomposition and matching pursuit, variational mode decomposition and detrended fluctuation analysis methods; the proposed method can improve the denoising performance and reliability of low-frequency magnetotelluric data. The reconstructed data are closer to the natural magnetotelluric data. The satisfactory performance in the results verifies the effectiveness of the design and optimization method.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies