Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identifying region specifc seasonal crop for leaf borne diseases by utilizing deep learning techniques

India economy depends on agriculture with severe climatic changes and a heavy infestation of diseases depleting food crop yield substantially. Rapid identification and real-time infestation feedback that affects plants are accomplished through computer vision and IoT, thereby providing a reliable system for farmers to increase the season’s growth yield. With LSTM, CNN provides an efficient way of identifying diseases specific leaf in plants through image recognition techniques. An extensive collection of plant leaf images is trained to recognize season-specific diseases like early blight and late blight, leaf mold, and yellow leaf curl. The proposed CNN model identifies the infestation with high accuracy and precision with significantly fewer training epochs. The proposed model provides an efficient way of identifying leaf borne infestation pertained to a particular agricultural region. Furthermore, there is a need to increase and improve different region-specific infestations that arise due to climatic and seasonal changes.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies