Tytuł pozycji:
Hydrogen storage alloys prepared by high-energy milling
Purpose: The aim of this work was to investigate an efficiency of high-energy milling, as a method to obtain hydrogen storage alloys with good properties. Design/methodology/approach: Two classes of the alloys were studied: AB2 type with atomic composition of (Ti0.5 Zr0.5)(V0.68 Mn0.68 Cr0.34 Ni0.7) and AB5 type with atomic composition of (Ce0.63 La0.37)(Ni3.55 Al0.3 Mn0.4 Co0.75).The materials were prepared by arc melting and initially pulverized and afterwards subjected to wet milling process in a planetary mill. Findings Both initially obtained alloys had proper, single phase structure of hexagonal symmetry. However their elemental composition was greatly inhomogeneous. High-energy milling causes both homogenization of the composition and severe fragmentation of the powder particles, which after milling have mean diameter of about 3 μm (AB2 alloy) and below 2 μm (AB5 alloy). The morphology of obtained powders reveals that they tend to form agglomerates consisting of large number of crystallites. Mean crystallite sizes after milling are of about 4.5 nm and of 20 nm, respectively. The specific surface of the powders, measured using BET method, equals 8.74 m2 /g and 2.70 m2 /g, respectively. Research limitations/implications The results provide the information on the possibility of obtaining hydrogen storage alloys by high-energy milling and on the transformations taking place as a result of this process. Practical implications: The obtained powders can be used to produce the elements of hydrogen-nickel batteries and fuel cells, providing improved properties; especially extreme rise of the specific surface of the hydrogen storage material, in compare to the standard methods.