Tytuł pozycji:
Stable scheduling of single machine with probabilistic parameters
We consider a stochastic variant of the single machine total weighted tardiness problem jobs parameters are independent random variables with normal or Erlang distributions. Since even deterministic problem is NP-hard, it is difficult to find global optimum for large instances in the reasonable run time. Therefore, we propose tabu search metaheuristics in this work. Computational experiments show that solutions obtained by the stochastic version of metaheuristics are more stable (i.e. resistant to data disturbance) than solutions generated by classic, deterministic version of the algorithm.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).