Tytuł pozycji:
FPGA implementation of logarithmic versions of Baum-Welch and Viterbi algorithms for reduced precision hidden Markov models
This paper presents a programmable system-on-chip implementation to be used for acceleration of computations within hidden Markov models. The high level synthesis (HLS) and “divide-and-conquer” approaches are presented for parallelization of Baum-Welch and Viterbi algorithms. To avoid arithmetic underflows, all computations are performed within the logarithmic space. Additionally, in order to carry out computations efficiently – i.e. directly in an FPGA system or a processor cache – we postulate to reduce the floating-point representations of HMMs. We state and prove a lemma about the length of numerically unsafe sequences for such reduced precision models. Finally, special attention is devoted to the design of a multiple logarithm and exponent approximation unit (MLEAU). Using associative mapping, this unit allows for simultaneous conversions of multiple values and thereby compensates for computational efforts of logarithmic-space operations. Design evaluation reveals absolute stall delay occurring by multiple hardware conversions to logarithms and to exponents, and furthermore the experiments evaluation reveals HMMs computation boundaries related to their probabilities and floating-point representation. The performance differences at each stage of computation are summarized in performance comparison between hardware acceleration using MLEAU and typical software implementation on an ARM or Intel processor.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).