Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dual-Path Image Reconstruction: Bridging Vision Transformer and Perceptual Compressive Sensing Networks

Over the past few years, notable advancements have been made through the adoption of self-attention mechanisms and perceptual optimization, which have proven to be successful techniques in enhancing the overall quality of image reconstruction. Self-attention mechanisms in Vision Transformers have been widely used in neural networks to capture long-range dependencies in image data, while perceptual optimization has been shown to enhance the perceptual quality of reconstructed images. In this paper, we present a novel approach to image reconstruction by bridging the capabilities of Vision Transformer and Perceptual Compressive Sensing Networks. Specifically, we use a self-attention mechanism to capture the global context of the image and guide the sampling process, while optimizing the perceptual quality of the sampled image using a pre-trained perceptual loss function. Our experiments demonstrate that our proposed approach outperforms existing state-of-the-art methods in terms of reconstruction quality and achieves visually pleasing results. Overall, our work contributes to the development of efficient and effective techniques for image sampling and reconstruction, which have potential applications in a wide range of domains, including medical imaging and video processing.
1. Thematic Tracks Regular Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies