Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Text Independent Automatic Speaker Recognition System using fusion of features

Tytuł:
Text Independent Automatic Speaker Recognition System using fusion of features
Autorzy:
Majda-Zdancewicz, E.
Dobrowolski, A. P.
Data publikacji:
2015
Słowa kluczowe:
automatic speaker recognition
features extraction
features selection
PCA
rozpoznawanie mowy automatyczne
ekstrakcja cech
selekcja cech
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This paper presents a speaker recognition system, which is independent of the linguistic context. The solved task includes: the preprocessing stage, the segmentation of speech signal leading to the extraction of features based on three techniques, selection of the most important features, and the classification stage involving a serial combination of classifiers. Sets of descriptors were obtained using three techniques: cepstral coefficients, mel-cepstral coefficients and original weighted cepstral coefficients. Optimal robust “Voice Print” has been determined using fisher coefficients and PCA analysis. Experiments on the 2002 NIST Speaker Recognition Evaluation corpus show that the proposed system is able to recognise the speaker, regardless on the speech content, even language content with great accuracy.
W pracy przedstawiono system rozpoznawania mówcy niezależny od tekstu wypowiedzi. Rozwiązane problemy obejmują: etap przetwarzania wstępnego, segmentację sygnału mowy prowadzącą do etapu ekstrakcji cech bazującej na trzech technikach analizy sygnału mowy, selekcję najbardziej istotnych cech oraz etap klasyfikacji obejmujący analizę kaskady klasyfikatorów. Zestaw cech uzyskano przy użyciu trzech technik: cepstrum, mel-cepstrum oraz autorskich ważonych cech cesptralnych. Optymalny wektor cech wyekstrahowano przy użyciu współczynników istotności Fishera oraz analizy PCA. Eksperymenty z wykorzystaniem bazy 2002 NIST Speaker Recognition Evaluation pokazują, że przedstawiony system rozpoznaje mówcę niezależnie od ograniczeń lingwistycznych treści, a nawet języka wypowiedzi, z zadowalającą dokładnością.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies