Tytuł pozycji:
A Social Robot-based Platform towards Automated Diet Tracking
Diet tracking via self-reports or manual taking of meal photos might be difficult, time-consuming, and discouraging, especially for children, which limits the potential of long-term dietary assessment. We present the design and development of a proof of concept of an automated and unobtrusive system for diet tracking integrating: a) a social robot programmed to automatically capture photos of food and motivate children, b) a deep learning model based on Google Inception V3, applied for the use case of image-based fruit recognition, c) a RESTful microservice architecture deployed to deliver the model outcomes to a platform aiming at childhood obesity prevention. We illustrate the feasibility and virtue of this approach, towards the development of the next-generation computer-assisted systems for automated diet tracking.
The study was supported by the European Union‘s HORIZON 2020 Programme (2014-2020), under ID no 777082, and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Ensino e Pesquisa (RNP) under OCARIoT
1. Track 1: Artificial Intelligence
2. Technical Session: 15th International Symposium Advances in Artificial Intelligence and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).