Tytuł pozycji:
Intelligent system for machining and optimization of 3D sculptured surfaces with ball-end milling
Purpose: This paper describes about intelligent machining system which is applied in a high speed machining robot with on-line monitoring and optimization for ball-end milling process. Design/methodology/approach: Manufacturing of 3D sculptured surfaces on high speed machining robot involves a number of machining parameters and tool geometries. The system collects machining data and cutting parameters which are necessary for genetic algorithm optimization. Findings: An intelligent machining system is developed for the simulation and testing on the PC machine. It is based on a main PC computer, which is connected to the high speed machining robot main processor so that control and communication can be realized. The system collects the variables of the cutting process by means of sensors which are optimized with the genetic algorithms. Research limitations/implications: 3D sculptured milling covers a wide range of operations. In 3D metal cutting processes, cutting conditions have an influence on reducing the production cost and time and deciding the quality of a final product. Practical implications: Simulated results show that the proposed intelligent machining system is effective and efficient, and can be integrated into a real-time intelligent manufacturing system for solving complex machining optimization problems. Originality/value: The paper describes about intelligent machining system which can applied in intelligent manufacturing process.