Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Application of M5P Model Tree and Artificial Neural Networks for Traffic Noise Prediction on Highways of India

Tytuł:
Application of M5P Model Tree and Artificial Neural Networks for Traffic Noise Prediction on Highways of India
Autorzy:
Mann, Suman
Singh, Gyanendra
Data publikacji:
2024
Słowa kluczowe:
machine learning
M5P model tree
artificial neural networks
traffic noise
uczenie maszynowe
model M5P
sztuczne sieci neuronowe
hałas uliczny
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Traffic noise prediction is the fastest growing development that reflects the rising concern of noise as environmental pollution. Prediction of noise exposure levels can help policy makers and government authorities to make early decisions and plan effective measures to mitigate noise pollution and protect human health. This study examines the application of M5P model tree and Artificial Neural Network (ANN) for prediction of traffic noise on Highways of Delhi. In total 865 data sets collected from 36 sampling stations were used for development of model. Effects of 13 independent variables were considered for prediction. Model selection criteria like determination coefficient (R2 ), root mean square error (RMSE), Mean absolute error (MSE) are used to judge the suitability of developed models. The work shows that both the models can predict traffic noise accurately, with R2 values of 0.922(M5P), 0.942(ANN) and RMSE of 2.17(M5P) ,1.95(ANN). The results indicate that machine learning approach provides better performance in complex areas, with heterogenous traffic patterns. M5p Model tree gives linear equations which are easy to comprehend and provides better insight, indicating that M5P model trees can be effectively used as an alternative to ANN for predicting traffic noise.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies