Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Feature engineering combined with 1-D convolutional neural network for improved mortality prediction

Tytuł:
Feature engineering combined with 1-D convolutional neural network for improved mortality prediction
Autorzy:
Verma, Rohit
Maheshwari, Saumil
Shukla, Anupam
Data publikacji:
2020
Słowa kluczowe:
1-D CNN
feature engineering
LSTM
mortality prediction
random forest
XGBoost
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Objectives: The appropriate care for patients admitted in Intensive care units (ICUs) is becoming increasingly prominent, thus recognizing the use of machine learning models. The real-time prediction of mortality of patients admitted in ICU has the potential for providing the physician with the interpretable results. With the growing crisis including soaring cost, unsafe care, misdirected care, fragmented care, chronic diseases and evolution of epidemic diseases in the domain of healthcare demands the application of automated and real-time data processing for assuring the improved quality of life. The intensive care units (ICUs) are responsible for generating a wealth of useful data in the form of Electronic Health Record (EHR). This data allows for the development of a prediction tool with perfect knowledge backing. Method: We aimed to build the mortality prediction model on 2012 Physionet Challenge mortality prediction database of 4,000 patients admitted in ICU. The challenges in the dataset, such as high dimensionality, imbalanced distribution and missing values, were tackled with analytical methods and tools via feature engineering and new variable construction. The objective of the research is to utilize the relations among the clinical variables and construct new variables which would establish the effectiveness of 1- Dimensional Convolutional Neural Network (1-D CNN) with constructed features. Results: Its performance with the traditional machine learning algorithms like XGBoost classifier, Light Gradient Boosting Machine (LGBM) classifier, Support Vector Machine (SVM), Decision Tree (DT), K-Neighbours Classifier (K-NN), and Random Forest Classifier (RF) and recurrent models like Long Short-Term Memory (LSTM) and LSTMattention is compared for Area Under Curve (AUC). The investigation reveals the best AUC of 0.848 using 1-D CNN model. Conclusion: The relationship between the various features were recognized. Also, constructed new features using existing ones. Multiple models were tested and compared on different metrics.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies