Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of noise on the performance of automatic systems for vocal fold lesions detection

Tytuł:
Impact of noise on the performance of automatic systems for vocal fold lesions detection
Autorzy:
Madruga, Mario
Campos-Roca, Yolanda
Pérez, Carlos J.
Data publikacji:
2021
Słowa kluczowe:
acoustic features
computer aided diagnosis
Reinke’s edema
noise robustness
voice disorders
cechy akustyczne
diagnoza wspomagana komputerowo
zaburzenia głosu
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Automatic voice condition analysis systems have been developed to automatically discriminate pathological voices from healthy ones in the context of two disorders related to exudative lesions of Reinke’s space: nodules and Reinke’s edema. The systems are based on acoustic features, extracted from sustained vowel recordings. Reduced subsets of features have been obtained from a larger set by a feature selection algorithm based on Whale Optimization in combination with Support Vector Machine classification. Robustness of the proposed systems is assessed by adding noise of two different types (synthetic white noise and actual noise recorded in a clinical environment) to corrupt the speech signals. Two speech databases were used for this investigation: the Massachusetts Eye and Ear Infirmary (MEEI) database and a second one specifically collected in Hospital San Pedro de Alcántara (Cáceres, Spain) for the scope of this work (UEX-Voice database). The results show that the prediction performance of the detection systems appreciably decrease when moving from MEEI to a database recorded in more realistic conditions. For both pathologies, the prediction performance declines under noisy conditions, being the effect of white noise more pronounced than the effect of noise recorded in the clinical environment.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies