Tytuł pozycji:
Zastosowanie sztucznych sieci neuronowych w modelowaniu prędkości wiatru jako jednej z determinant poboru energii w budynkach
Celem pracy była analiza możliwości wykorzystania narzędzia z obszaru sztucznej inteligencji, jakim są sztuczne sieci neuronowe (ANN) w zagadnieniach związanych z prognozowaniem poboru energii elektrycznej w budynkach. W wielu opracowaniach wykazano, że głównym źródłem popytu na energię są systemy klimatyzacji oraz systemy grzewcze (HVAC). Z tego też powodu jednym z podstawowych determinant zapotrzebowania na energię są czynniki atmosferyczne, w tym prędkość wiatru. W pracy oprócz badań literaturowych przeprowadzono również badania empiryczne w obszarze przewidywania prędkości wiatru przy użyciu ANN wykorzystujących dane archiwalne pochodzące ze stacji meteorologicznej usytuowanej na lotnisku Lublinek w Łodzi. Testom zostały poddane sieci pracujące w oparciu o architekturę perceptronu wielowarstwowego (MLP), sieci realizujące regresję uogólnioną (GRNN) oraz sieci o radialnych funkcjach bazowych (RBF). Modelowanie objęło prędkości wiatru w latach 2008-2016. Dane zostały podzielone na trzy zbiory: uczący, walidacyjny i testowy. Takie podejście umożliwiło minimalizację ryzyka przeuczenia ANN. Jednocześnie użycie jedynie najnowszych informacji w charakterze danych testowych umożliwiło opracowanie modelu, który może zostać wykorzystany w praktyce biznesowej. W pracy nie ograniczono się do poszukiwania optymalnego zbioru zmiennych objaśniających jedynie wśród danych pozyskanych bezpośrednio ze stacji meteorologicznej, lecz analizie poddano także zmienne wejściowe powstałe poprzez zastosowanie narzędzi analizy technicznej.
The paper presents possibilities to use ANN as a model predicting both - demand for energy in buildings and meteorological parameters affecting that demand such as wind speed. Empirical studies included wind speed forecasts using weather data from a meteorological station located at Lublinek Airport in Lodz. Numerous ANN types such as MLP, RBF and GRNN were tested during simulations.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).