Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

R-Countability Axioms

Tytuł:
R-Countability Axioms
Autorzy:
Kornas, Amel Emhemed
Arwini, Khadiga Ali
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
-compact spaces
Źródło:
World Scientific News; 2020, 149; 92-109
2392-2192
Język:
angielski
Prawa:
CC BY-NC: Creative Commons Uznanie autorstwa - Użycie niekomercyjne 4.0
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this article, we use the concept of regular open sets to define a generalization of the countability axioms; namely regular countability axioms, and they are denoted by r-countability axioms. This class of axioms includes r-separable spaces, r-first countable spaces, r-Lindelöf spaces, r--compact spaces and r-second countable spaces. We investigate their fundamental properties, and study the implication of the new axioms among themselves and with the known axioms. Moreover, we study the hereditary properties for r-countability axioms, also we consider some related functions in terms of r-open sets, which preserve these spaces. Finally, we prove that in regular space r-countability axioms and countability axioms are equivalent, while in locally compact T_2 space, the spaces: Lindelöf, r- Lindelöf, -compact and r--compact are all equivalent.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies