Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Numerical analysis of the biomechanical effects on micro-vessels by ultrasound-driven cavitation

Tytuł:
Numerical analysis of the biomechanical effects on micro-vessels by ultrasound-driven cavitation
Autorzy:
Liu, Wenyi
Hu, Jiwen
Liu, Yatao
Lei, Weirui
Chen, Xuekun
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ultrasound
cavitation
stress
strain
permeability
ultradźwięki
kawitacja
naprężenie
odkształcenie
przepuszczalność
Źródło:
Acta of Bioengineering and Biomechanics; 2021, 23, 1; 95-105
1509-409X
2450-6303
Język:
angielski
Prawa:
Wszystkie prawa zastrzeżone. Swoboda użytkownika ograniczona do ustawowego zakresu dozwolonego użytku
Dostawca treści:
Biblioteka Nauki
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Purpose: The goal of this study was to evaluate the biomechanical effects such as sonoporation or permeability, produced by ultrasound-driven microbubbles (UDM) within microvessels with various parameters. Methods: In this study, a bubble-fluid-solid coupling system was established through combination of finite element method. The stress, strain and permeability of the vessel wall were theoretically simulated for different ultrasound frequencies, vessel radius and vessel thickness. Results: the bubble oscillation induces the vessel wall dilation and invagination under a pressure of 0.1 MPa. The stress distribution over the microvessel wall was heterogeneous and the maximum value of the midpoint on the inner vessel wall could reach 0.7 MPa as a frequency ranges from 1 to 3 MHz, and a vessel radius and an initial microbubble radius fall within the range of 3.5–13 μm and 1–4 μm, respectively. With the same conditions, the maximum shear stress was equal to 1.2 kPa and occurred at a distance of ±5 μm from the midpoint of 10 μm and the maximum value of permeability was 3.033 × 10–13. Conclusions: Results of the study revealed a strong dependence of biomechanical effects on the excitation frequency, initial bubble radius, and vessel radius. Numerical simulations could provide insight into understanding the mechanism behind bubble-vessel interactions by UDM, which may explore the potential for further improvements to medical applications.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies