Tytuł pozycji:
Almost sure central limit theorems for random ratios and applications to LSE for fractional Ornstein-Uhlenbeck processes
We will investigate an almost sure central limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to one. This result leads to the ASCLT for least squares estimators for Ornstein-Uhlenbeck proces driven by fractional Brownian motion.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).