Tytuł pozycji:
On approximate conformal mapping of a disk and an annulus with radial and circular slits onto multiply connected domains
The method of boundary curve reparametrization is generalized to the case of multiply connected domains. We construct the approximate analytical conformal mapping of the unit disk with m circular slits and n-m radial slits and an annulus with (m-1) circular slits and n-m radial slits onto an arbitrary given (n+1) multiply connected finite domain with a smooth boundary. The method is based on extension of the Lichtenstein-Gershgorin equation to a multiply connected domain. The proposed method is reduced to the solution of a linear system with unknown Fourier coefficients. The approximate mapping function has the form of a Cauchy integral. Numerical examples demonstrate that the proposed method is effective in computations.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).