Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Application of Diversified Ensemble Learning in Real-life Business Problems: The Case of Predicting Costs of Forwarding Contracts

Tytuł:
Application of Diversified Ensemble Learning in Real-life Business Problems: The Case of Predicting Costs of Forwarding Contracts
Autorzy:
Trajanoska, Milena
Gjorgovski, Pavel
Zdravevski, Eftim
Data publikacji:
2022
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Finding an optimal machine learning model that can be applied to a business problem is a complex challenge that needs to provide a balance between multiple requirements, including a high predictive performance of the model, continuous learning and deployment, and explainability of the predictions. The topic of the FedCSIS 2022 Challenge: ‘Predicting the Costs of Forwarding Contracts' is related to the challenges logistics and transportation companies are facing. To tackle this challenge, we utilized the provided datasets to establish an entire Machine Learning framework which includes domain-specific feature engineering and enrichment, generic feature transformation and extraction, model hyper-parameter tuning, and creating ensembles of traditional and deep learning models. Our contributions additionally include an analysis of the types of models which are suitable for the case of predicting a multimodal continuous target variable, as well as explainable analysis of the features which have the largest impact on predicting the value of these costs. We further show that ensembles created by combining multiple different models trained with different algorithms can improve the performance on unseen data. In this particular dataset, the experiments showed that such a combination improves the score by 3% compared to the best performing individual model.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies