Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

An overview of the possibilities of combining medical imaging with deep learning techniques focused on CT

Tytuł:
An overview of the possibilities of combining medical imaging with deep learning techniques focused on CT
Autorzy:
Podolszańska, Jolanta
Data publikacji:
2022
Słowa kluczowe:
computed tomography
CNN
deep learning
image analysis
tomografia komputerowa
głębokie uczenie
analiza obrazu
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Combining tomographic imaging with deep learning techniques enables image analysis. There are still many questions in the subject of image reconstruction from projection using a deep neural network. This publication focuses on biomedical imaging with an emphasis on developing a new generation of image reconstruction techniques using deep neural networks. Such targeted research may lead to the development of intelligent use of knowledge in big data, including innovative approaches to the reconstruction of tomographic images and further development in the area of diagnostic imaging. Fully utilizing the possibilities of machine learning in biomedical imaging will be the first step in the development of new translational techniques.
Połączenie obrazowania tomograficznego z technikami uczenia głębokiego umożliwia analizę obrazu. W dziedzinie rekonstrukcji obrazu z projekcji za pomocą głębokiej sieci neuronowej wciąż istnieje wiele wątpliwości. Ta publikacja skupia się na obrazowaniu biomedycznym z naciskiem na opracowanie nowej generacji technik rekonstrukcji obrazów właśnie z użyciem głębokich sieci neuronowych. Tak ukierunkowane badania mogą prowadzić do rozwoju inteligentnego wykorzystania wiedzy z zakresu big data, w tym innowacyjnych podejść do rekonstrukcji obrazów tomograficznych oraz dalszego rozwoju w obszarze diagnostyki obrazowej. W pełni wykorzystane możliwości uczenia maszynowego w obrazowaniu biomedycznym będzie pierwszym krokiem do rozwoju nowych technik translacyjnych.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies