Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Experimental investigation of mechanical stiffness in lattice structures fabricated with PLA using fused deposition modelling

Tytuł:
Experimental investigation of mechanical stiffness in lattice structures fabricated with PLA using fused deposition modelling
Autorzy:
Eljihad, A.
Nassraoui, M.
Bouksou, O.
Data publikacji:
2023
Słowa kluczowe:
additive manufacturing
topological optimisation
mechanical properties
unit cell
lattice structures
wytwarzanie przyrostowe
optymalizacja topologiczna
właściwości mechaniczne
komórka elementarna
struktury kratowe
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Purpose: The objective of the paper is to design and characterise with polylactic acid (PLA) material three cellular structures in the form of lattices which are diagonal-octet-centred shapes for two sizes 6x6x6 and 12x12x12 with a compression test to examine their stiffness using FDM technology compared to polyjet technology. Design/methodology/approach: The study used two analytical approaches to investigate lattice structures: experimental analysis and theoretical analysis. Experimental methods such as compression tests were conducted to determine the characteristics of lattice structures. In addition, theoretical analysis was conducted using Hook's law and Ashby's Gibson model to predict appropriate behaviour. The combination of experimental and theoretical methods provided a comprehensive understanding of lattice structures and their properties. Findings: The experimental study examined the impact of the shape and size of a lattice structure on the stiffness and lightness of objects 3D printed with FDM technology by PLA material. The research revealed that the 6x6x6 diagonal lattice structure size provided a good balance between stiffness and lightness. While the 6x6x6 byte structure was even lighter, with a mass ratio of 2.09 compared to the diagonal structure, it was less rigid, with a ratio of 0.43, making the diagonal structure more suitable for certain applications. The study highlights the importance of considering both the shape and size of the lattice structure when designing 3D-printed objects with specific mechanical properties; the chosen structure could be a good choice for applications where stiffness and lightness are important. Research limitations/implications: The limitations of the research lie in its limited scope, focusing primarily on the effect of shape (octet-diagonal centred) and unit cell size on Young's modulus of PLA material. Other aspects of 3D printing, such as material selection and thermal properties, were not considered. Furthermore, the results obtained are specific to the printing parameters and experimental conditions chosen, which limits their generalizability to other 3D printing configurations or methods. However, these results have important implications for optimising the PLA printing process. They enable the identification of optimal parameters, such as unit cell shape and size, to produce stiffer, higher-quality structures. In addition, the research is helping to improve the mechanical properties of 3D-printed lattice parts, paving the way for more efficient manufacturing methods and stronger components. Practical implications: Our analysis can be used as a decision aid for the design of FDM lattice parts. Indeed, we can choose the diagonal structure of 6x6x6, which would provide favourable stiffness for functional parts. Originality/value: The paper explores the compression test of lattice structures using FDM technology, which presents a new direction for additive manufacturing. The study takes an experimental approach to evaluate the reliability of various additive manufacturing technologies for creating lattice structures. The study results provide insight into the most reliable technology for producing lattice structures.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies