Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Efektywne wykorzystanie danych RGB-D w systemie samolokalizacji na podstawie cech punktowych

Tytuł:
Efektywne wykorzystanie danych RGB-D w systemie samolokalizacji na podstawie cech punktowych
Autorzy:
Kraft, M.
Nowicki, M.
Schmidt, A.
Skrzypczyński, P.
Data publikacji:
2014
Słowa kluczowe:
percepcja obrazu
obraz RGB-D
system samolokalizacji
cecha punktowa
robotyka
image perception
RGB-D
self-localization
feature point
robotics
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Praca dotyczy zagadnienia określania położenia i orientacji sensora wizyjnego względem sześciu stopni swobody z wykorzystaniem cech punktowych wyodrębnionych z danych RGB-D. Skoncentrowano się na efektywnych algorytmach ekstrakcji cech w postaci punktów w przestrzeni trójwymiarowej oraz metodach zarządzania zbiorem cech otrzymanych z pojedynczego obrazu. Algorytmy i metody stanowiące główny wkład prezentowanej pracy w dziedzinę przetwarzania danych RGB-D przedstawiono w kontekście użycia w szybkim systemie odometrii wizyjnej. Przedstawiono wyniki badań eksperymentalnych wykorzystujących dwa publicznie dostępne zestawy danych RGB-D.
This paper concerns the problem of a vision sensor's position and orientation computation with regard to the full six degrees of freedom, using point features extracted from RGB-D data. We focus on efficient point feature extraction algorithms and on methods for the feature set management in a single RGB-D data frame. While the fast, RGB-D-based visual odometry system described in this paper builds upon our previous results as to the general architecture, the important novel elements introduced here are aimed at improving the precision and robustness of the motion estimate computed from the matching point features of two RGB-D frames. The visual odometry system is tested on two publicly available data sets, demonstrating performance comparable to a much more complicated and computation intensive RGB-D SLAM method.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies