Tytuł pozycji:
Neighbourhood and Lattice Models of Second-Order Intuitionistic Propositional Logic
We study a version of the Stone duality between the Alexandrov spaces and the completely distributive algebraic lattices. This enables us to present lattice-theoretical models of second-order intuitionistic propositional logic which correlates with the Kripke models introduced by Sobolev. This can be regarded as a second-order extension of the well-known correspondence between Heyting algebras and Kripke models in the semantics of intuitionistic propositional logic.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).