Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Microstructure evolution and dynamic recrystallization mechanisms of 316L stainless steel during hot deformation

Tytuł:
Microstructure evolution and dynamic recrystallization mechanisms of 316L stainless steel during hot deformation
Autorzy:
Zhao, Guanghui
Tian, Yinghao
Li, Huaying
Ma, Lifeng
Li, Yugui
Li, Juan
Data publikacji:
2024
Słowa kluczowe:
obróbka cieplna
stal nierdzewna 316L
ewolucja mikrostrukturalna
dynamiczna rekrystalizacja
hot deformation
316L stainless steel
microstructural evolution
dynamic recrystallisation
twin boundary
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Through isothermal compression testing at various temperatures and strain rates, the thermal deformation behavior of 316L stainless steel was investigated. Utilizing corrected true stress–strain data, an Arrhenius constitutive model with strain compensation was developed. Electron backscatter diffraction and transmission electron microscopy were employed to study the microstructure of the compressed specimens, revealing substantial impacts of temperature and strain rate. Higher temperatures boosted the transition from low-angle to high-angle grain boundaries (HAGB), while also increasing the volume percentage of dynamic recrystallization (DRX) and grain size. The impacts of Dynamic Grain Growth/Dynamic Abnormal Grain Growth restricted DRX at higher deformation temperatures and lower strain rates, but at lower temperatures, HAGB reduced with increasing strain rate. As a result, the proportion of HAGB and the volume fraction of recrystallization both decreased. The percentage of ∑3 n (1 ≤ n ≤ 3) twin boundaries also rose with temperature and followed a similar pattern to HAGB with strain rate. High temperature and high strain rate were the ideal formation conditions. Discontinuous dynamic recrystallization (DDRX) was the predominant DRX mechanism in the steel during thermal deformation, with continuous dynamic recrystallization (CDRX) acting as an auxiliary mechanism largely occurring in the low-temperature and high-strain-rate processing conditions like 1273–1323 K, 0.1–1 s −1 . Additionally, when the temperature rose, CDRX was suppressed while DDRX was encouraged.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies