Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Klasyfikacja postur człowieka z wykorzystaniem sieci neuronowej

Tytuł:
Klasyfikacja postur człowieka z wykorzystaniem sieci neuronowej
Autorzy:
Cydejko, Jakub
Dutta, Vibekananda
Zielińska, Teresa
Data publikacji:
2022
Słowa kluczowe:
systemy wizyjne
systemy sensoryczne
sieci neuronowe
vision systems
sensory system
neural networks
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Rozpoznawanie postur jest potrzebne do analizy czynności wykonywanych przez człowieka, syntezy ruchu robotów humanoidalnych oraz w badaniach nad robotami współpracującymi. Popularne w ostatnich latach tanie, bezprzewodowe czujniki wizyjne RGB-D umożliwiające łatwa˛ rejestracje˛ ruchu człowieka, ułatwiają˛ realizacje˛ tego zadania badawczego. Powszechnie stosowane są, tu konwencjonalne klasyfikatory, które na podstawie zarejestrowanych trajektorii ruchu stawów rozpoznają˛ postury człowieka. Nie sprawdzają, się, one jednak w pełni podczas obserwacji ruchu w płaszczyźnie strzałkowej, gdy pozycje niektórych stawów są, przesłonięte. Celem niniejszej pracy jest opracowanie nowej metody klasyfikacji postur. Opracowana metoda umożliwia rozpoznawanie aktywności z wykorzystaniem konkurencyjnej sieci neuronowej (CNN). Badania zrealizowano w dwu etapach. Pierwszy etap obejmował wstępne przetwarzanie danych, obejmujący filtrowanie i transformacje˛ danych. Drugim etapem było dobranie odpowiedniej sieci klasyfikującej. Zastosowano sieć konkurencyjną z uczeniem nienadzorowanym. Jakość klasyfikacji była testowana w zależności od różnych metryk odległości. Po wyborze satysfakcjonującej metryki dokonano jakościowej i ilościowej oceny uzyskanych wyników. Porównano wyniki klasyfikacji uzyskane przy użyciu rożnych typów sieci neuronowych. W zakończeniu pracy sformułowano szereg wniosków.
Popular in recent years, cheap, wireless RGB-D vision sensors enable easy registration of human movement to facilitate the implementation of this research task. Here, the conventional classifiers are commonly used, which recognize human postures based on the recorded trajectories of joint movement. However, it does not perform well when observing movement in the sagittal plane because the positions of some joints are invisible here. The aim of the work is to develop a method for postures classification leading to the classification of human activities using data recorded by the RGB-D cameras. The method enables the recognition of activity with the use of a competitive neural network (CNN). The research was carried out in two stages. First, data preprocessing was performed, including raw data filtering and transformation to locate the origin of the reference frame in the point in the torso and scaling to obtain a consistent representation of the data. The classification quality was then tested using different variants of the proposed unsupervised variants of competitive neural networks. Various measures of distance have been used here. The results were presented graphically using scatter plots and stick diagrams.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies