Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of Missing Values in Adult Data Set of UCI Machine Learning : A Case of Study

Tytuł:
Prediction of Missing Values in Adult Data Set of UCI Machine Learning : A Case of Study
Autorzy:
Luna, Alejandra
Bello, Mario
Hernandez, Ana
Bonilla, Edmundo
Data publikacji:
2020
Słowa kluczowe:
Shannon theory
entropy
missing attributes
adult dataset
UCI Machine Learning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
These days, not having complete data of any kind can be a big problem for different organizations when making decisions. In this article, we propose to use Shannon entropy and information gain to predict and impute missing categorical data in any data set. It is detailed with an example of how entropy is applied and knows the level of uncertainty of each attribute value. Likewise, the imputation of the missing attributes is also carried out with other imputation techniques in the Adult data set of UCI Machine Learning to denote the advantages offered by the proposed methodology.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies