Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A new hybrid algorithm combining Ant Lion optimization and particle swarm optimization to solve an economic dispatch problem with non-smooth cost function

Tytuł:
A new hybrid algorithm combining Ant Lion optimization and particle swarm optimization to solve an economic dispatch problem with non-smooth cost function
Autorzy:
Takeang, Chiraphon
Aurasopon, Apinan
Data publikacji:
2021
Słowa kluczowe:
Ant Lion optimization
particle swarm optimization
hybrid algorithm
economic dispatch
dystrybucja energii ekonomiczna
algorytm rojowy
algorytm hybrydowy
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This paper presents a new hybrid algorithm which is a combination of ant lion optimization (ALO) and particle swarm optimization (PSO) to solve an economic dispatch (ED) problem with non-smooth cost function characteristic. In the proposed algorithm, HALO-PSO, ALO method is used to find the initial value and PSO is used to find the best solutions causing it provides faster and more accurate results compared to conventional methods. To show its effectiveness, the HALO-PSO was applied to test two systems consisting of either 6 or 13 power generating units. Results confirm that the proposed HALO-PSO algorithm is capable of obtaining rapid convergence and a high quality solution efficiently.
W artykule przedstawiono nowy algorytm hybrydowy, który jest kombinacją optymalizacji Ant Lion (ALO) i optymalizacji roju cząstek (PSO) w celu rozwiązania problemu ekonomicznej dystrybucji (ED) z niegładką charakterystyką funkcji kosztu. W proponowanym algorytmie HALOPSO, metoda ALO służy do znalezienia wartości początkowej, a PSO służy do znalezienia najlepszych rozwiązań, dzięki czemu zapewnia szybsze i dokładniejsze wyniki w porównaniu do metod konwencjonalnych. Aby wykazać jego skuteczność, HALO-PSO został zastosowany do przetestowania dwóch systemów składających się z 6 lub 13 jednostek wytwórczych. Wyniki potwierdzają, że proponowany algorytm HALO-PSO jest w stanie skutecznie uzyskać szybką konwergencję i wysokiej jakości rozwiązanie.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies