Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Koncepcja odporności według Ryszarda Zielińskiego. Odporność w modelach parametrycznych

Tytuł:
Koncepcja odporności według Ryszarda Zielińskiego. Odporność w modelach parametrycznych
Autorzy:
Boratyńska, A.
Data publikacji:
2012
Słowa kluczowe:
funkcja odporności
rozkład obciążenia estymatora
test analizy wariancji
moc testu
estymator bayesowski
klasy rozkładów a priori
robustness
exponential distribution
bias of estimator
test
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W działalnosci naukowej prof. dr hab. Ryszarda Zielinskiego obszerne miejsce zajmuje badanie zachowania sie procedur statystycznych przy zaburzeniu rozwazanego modelu statystycznego, czyli sytuacji, gdy obserwowana zmienna losowa nie spełnia załozen modelu. W tej czesci przedstawione zostana koncepcje i sposoby badania wrazliwosci procedur statystycznych, mierniki ich jakosci, metody wyznaczania procedur optymalnych i przykłady wykorzystania w róznych modelach rozwazanych w pracach Profesora.
The concept of robustness of statistical procedures is one of the most important subject in Zielinski's papers. In this article the development of the idea of robustness as introduced in Zielinski's papers is presented. The definitions of a supermodel and a robustness function are given. The problem of the robust estimation of a scale parameter in an exponential model and the robustness of tests for comparison of means in two or more populations are described. Robustness in Bayesian statistical models is connected with an unexactly specified prior distribution. Here the following Zielinski's results in Bayesian robustness are presented: the most stable estimator in the Poisson model and the Bayes optimal stopping rule in a homogeneous Poisson process with conjugate classes of priors, the optimal experimental designs in Bayesian linear models under variation in the prior, an upper bound for the Kolmogorov distance between the posterior distributions in terms of that between the prior distributions.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies