Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Face Recognition in Visible and Infra-Red Imagery - Comparison of Methods

Tytuł:
Face Recognition in Visible and Infra-Red Imagery - Comparison of Methods
Autorzy:
Siwek, K.
Osowski, S.
Jakubowski, J.
Data publikacji:
2015
Słowa kluczowe:
visible and infra-red imagery
face recognition
transformation of data
classification
obraz widzialny
obraz w podczerwieni
rozpoznawanie twarzy
transformacja danych
klasyfikacja
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The paper is concerned with the recognition of faces represented by the visible and infra-red images. Different methods of image feature generation at application of different classifiers will be studied and compared for both types of face imagery. The investigated approaches include the linear and nonlinear methods of transformation: principal component analysis (PCA), Kernel PCA, Sammon transformation and stochastic neighbor embedding with t-distribution (tSNE). The representation of the image in the form of limited number of main components of transformation is applied to the input of support vector machine classifier and random forest. The numerical results of experiments will be presented and discussed.
Praca przedstawia porównanie metod rozpoznawania twarzy na podstawie dwu rodzajów obrazów: widzialnego oraz w podczerwieni. Zbadano kilka metod przetwarzania obrazu w cechy diagnostyczne: metodę opartą na PCA, nieliniową metodę KPCA, odwzorowanie Sammona oraz transformację stochastyczną tSNE. Każda z tych metod generuje inny zestaw cech diagnostycznych użytych jako atrybuty wejściowe dla klasyfikatora. W pracy zastosowano zespół klasyfikatorów stosujących sieć SVM oraz las losowy Breimana . Przedstawiono wyniki rozpoznania każdego z tych klasyfikatorów współpracujących z odpowiednim zestawem atrybutów wejściowych oraz wynik fuzji poszczególnych rezultatów. Jako jednostkę integrującą zespół zastosowano las drzew losowych. Wyniki pokazują, że zastosowanie wielu metod przetwarzania obrazu w cechy diagnostyczne i równoległego obrazowania twarzy w postaci widzialnej i w podczerwieni pozwala zwiększyć efektywność rozpoznania o około 30%.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies