Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Elementary Matrix-computational Proof of Quillen-Suslin Theorem for Ore Extensions

Tytuł:
Elementary Matrix-computational Proof of Quillen-Suslin Theorem for Ore Extensions
Autorzy:
Fajardo, William
Lezama, Oswaldo
Data publikacji:
2019
Słowa kluczowe:
maple
non-commutative computational algebra
ore extensions
projective modules
symbolic algorithms
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this short note we present an elementary matrix-constructive algorithmic proof of the Quillen-Suslin theorem for Ore extensions A := K[x; σ, δ], where K is a division ring, σ : K → K is a division ring automorphism and σ : K → K is a σ-derivation of K. It asserts that every finitely generated projective A-module is free. We construct a symbolic algorithm that computes the basis of a given finitely generated projective A-module. The algorithm is implemented in a computational package. Its efficiency is illustrated by four representative examples.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies