Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of flyrock distance induced by blasting using particle swarm optimization and multiple regression analysis: an engineering perspective

Tytuł:
Prediction of flyrock distance induced by blasting using particle swarm optimization and multiple regression analysis: an engineering perspective
Autorzy:
Chen, Yong
Wang, Minghua
Yin, Heng
Zhang, Tianbao
Data publikacji:
2024
Słowa kluczowe:
random forest
particle swarm optimization
multiple regression analysis
fly-rock distance
las losowy
optymalizacja roju cząstek
analiza regresji wielokrotnej
odrzucające skały
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Flyrock is one of the major safety hazards induced by blasting operations. However, few studies were for predicting blasting-induced flyrock distance from the perspective of engineers. The present paper attempts to provide an engineer-friendly equation predicting blasting-induced flyrock distance. Data used in the present study contains s seven blasting parameters including borehole diameter, blasthole length, powder factor, stemming length, maximum charge per delay, burden, and flyrock distance is obtained. Data is inputted into Random Forest for feature selection. The selected features are formulated as two candidate equations, including Multiple Linear Regression (MLR) equation and Multiple Nonlinear Regression (MNR) equation. Those two candidates are respectively referred by Particle Swarm Optimization for searching optimum values for the coefficients of selected features. It is proved that MLR equation has better accuracy. MLR equation is compared with two empirical equations and the MLR equation based on least squares method. It is found that the coefficient of correlation of the proposed MLR equation reaches 0.918, which is the highest compared with the scores of other three equations. The present study utilizes feature selection process to screen inputs, which effectively excludes irrelevant parameters from being considered. Plus the contribution of Particle Swarm Optimization, the accuracy of the obtained equation can be guaranteed.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies