Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Classical versus deep learning methods for anomaly detection in ECG using wavelet transformation

Tytuł:
Classical versus deep learning methods for anomaly detection in ECG using wavelet transformation
Autorzy:
Osowski, Stanislaw
Gołgowski, Maciej
Data publikacji:
2021
Słowa kluczowe:
anomaly detection
wavelet transform
diagnostic features of ECG
classification
CNN
wykrywanie anomalii
transformacja falkowa
cechy diagnostyczne EKG
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The paper describes and compares two forms of wavelet transformation: discrete (DWT) and continuous (CWT) in the analysis of electrocardiograms (ECG) to detect the anomaly. The anomalies have been limited to two types: cardiac and congestive heart failure. Two independent approaches to the problem have been considered. One is based on discrete wavelet transformation and feature generation based on statistical parameters of the results of the transformed ECG signals. These descriptors, after selection, are delivered as the input attributes to different classifiers. The second approach applies continuous wavelet transformation of ECG signals and the resulting two-dimensional image formed in time-frequency dimensions represents the input to the convolutional neural network, which is responsible for the generation of the diagnostic features and final classification. The experiments have been performed on the publically available database Complex Physiologic Signals PhysioNet. The calculations have been done in Python. The results of both approaches: DWT and CWT have been discussed and compared.
Artykuł predstawia dwa podejścia do wykrywania anomalii w sygnalach ECG. Jako anomalie rozważane są: arytmia i zastoinowa niewydolność serca. Podstawą analizy jest sygnał ECG poddany transformacji falkowej w dwu postaciach: transformacja dyskretna oraz transformacja ciągła. W przypadku transformacji dyskretnej sygnał ECG poddany jest dekompozycji falkowej na kilku poziomach a wyniki tej dekompozycji (sygnały szczegółowe i sygnał aproksymacyjny ostatniego poziomu) podlegają opisowi statystycznemu tworząc zbiór deskryptorów numerycznych – potencjalnych cech diagnostycznych. Po przeprowadzonej selekcji stanowią one atrybuty wejściowe dla zespołu 9 klasyfikatorów. W drugim podejściu sygnał ECG jest poddany ciągłej transformacji falkowej generując dwuwymiarową macierz w postaci obrazu. Zbiór takich obrazów podawany jest na wejście głębokiej sieci neuronowej CNN, która w jednej strukturze dokonuje jednocześnie generacji cech diagnostycznych i klasyfikacji. Eksperymenty numeryczne przeprowadzone zostały na ogólnie dostępnej bazie danych Complex Physiologic Signals PhysioNet. Wyniki eksperymentów wykazały przewagę podejścia wykorzystujacego dyskretną transformację falkową.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies