Tytuł pozycji:
Efficiency of artificial intelligence methods for hearing loss type classification : an evaluation
- Tytuł:
-
Efficiency of artificial intelligence methods for hearing loss type classification : an evaluation
- Autorzy:
-
Kassjański, Michał
Kulawiak, Marcin
Przewoźny, Tomasz
Tretiakow, Dmitry
Kuryłowicz, Jagoda
Molisz, Andrzej
Koźmiński, Krzysztof
Kwaśniewska, Aleksandra
Mierzwińska-Dolny, Paulina
Grono, Miłosz
- Data publikacji:
-
2024
- Słowa kluczowe:
-
classification
hearing loss types
pure-tone audiometry
RNN
LSTM
evaluation
- Język:
-
angielski
- Dostawca treści:
-
BazTech
-
Przejdź do źródła  Link otwiera się w nowym oknie Pełny tekst  Link otwiera się w nowym oknie
The evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone audiometry samples that have been labeled by professional audiologists in order to develop an automatic classifier of hearing loss type. The tested models include Logistic Regression, Support Vector Machines, Stochastic Gradient Descent, Decision Trees, Random Forest, Feedforward Neural Network (FNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The presented work also investigates the influence of training dataset augmentation with the use of a Conditional Generative Adversarial Network on the performance of machine learning algorithms and examines the impact of various standardization procedures on the effectiveness of deep learning architectures. Overall, the highest classification performance, was achieved by LSTM with an out-of-training accuracy of 97.56%.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).