Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Fractional trapezium–type inequalities for strongly exponentially generalized preinvex functions with applications

Tytuł:
Fractional trapezium–type inequalities for strongly exponentially generalized preinvex functions with applications
Autorzy:
Fundo, Akli
Kashuri, Artion
Data publikacji:
2020
Słowa kluczowe:
trapezium-type integral inequalities
preinvexity
exponential convex function
general fractional integrals
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The aim of this paper is to introduce a new extension of preinvexity called strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvexity. Some new integral inequalities of trapezium-type for strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvex functions with modulus c via Riemann-Liouville fractional integral are established. Also, some new estimates with respect to trapezium-type integral inequalities for strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvex functions with modulus c via general fractional integrals are obtained. We show that the class of strongly exponentially generalized (m, ω1, ω2, h1, h2)-preinvex functions with modulus c includes several other classes of preinvex functions. At the end, some new error estimates for trapezoidal quadrature formula are provided as well. This results may stimulate further research in different areas of pure and applied sciences.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies