Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Recognition of pick wear condition based on Grey-Markov chain model

Tytuł:
Recognition of pick wear condition based on Grey-Markov chain model
Autorzy:
Zhang, Qiang
Zhang, Jiayao
Data publikacji:
2023
Słowa kluczowe:
pick wear
vibration acceleration signal
acoustic emission signal
Grey-Markov method
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
An attempt is made in this paper to solve the pick wear problem of mining machinery and propose a pick wear degradation model based on the Grey-Markov chain by using generated characteristics signals and certain pick wear parameters to enhance the prediction accuracy. The vibration and acoustic emission signals generated during the catting pick are extracted and analyzed. The energy and the value of the characteristic signal are obtained by wavelet analysis to construct a characteristic sample library of the signals. Two kinds of signals are applied to the model to analyze the error between the real and the predicted values. The model prediction results demonstrate a 1.43% error of the vibration signal, 1.64% error of the acoustic emission signal with 98% prediction accuracy, thus offers a new method for monitoring the pick wear of mining machinery.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies