Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimal generalized Hohmann transfer with plane change using lagrange multipliers

Tytuł:
Optimal generalized Hohmann transfer with plane change using lagrange multipliers
Autorzy:
Kamel, O. M.
Soliman, A. S.
Amin, M. R.
Data publikacji:
2017
Słowa kluczowe:
orbital mechanics
elliptic Hohmann transfer with plane change
optimization problem
Lagrange multipliers
mechanika orbitalna
eliptyczny transfer Hohmanna
problem optymalizacyjny
mnożniki Lagrange'a
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The optimized orbit transfer of a space vehicle, revolving initially around the primary, in a similar orbit to that of the Earth around the Sun, in an elliptic trajectory, to another similar elliptic orbit of an adequate outer planet is studied in this paper. We assume the elements of the initial orbit to be that of the Earth, and the elements of the final orbit to be that of an outer adequate planet, Mars for instance. We consider the case of two impulse generalized Hohmann non coplanar orbits. We need noncoplanar (plane change) maneuvers mainly because: 1) a launch-site location restricts the initial orbit inclination for the vehicle; 2) the direction of the launch can influence the amount of velocity the booster must supply, so certain orientations may be more desirable; and 3) timing constraints may dictate a launch window that isn’t the best, from which we must make changes[3]. We used the Lagrange multipliers method to get the optimum of the total minimum energy required ΔVT , by optimizing the two plane change angles 1 and 2, where 1 is the plane change at the first instantaneous impulse at peri-apse, and 2 the plane change at the second instantaneous thrust at apo-apse. We adopt the case of Earth - Mars, as a numerical example.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies